Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(2): e0228568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027707

RESUMO

In human, OCTN2 (SLC22A5) and ATB0,+ (SLC6A14) transporters mediate the uptake of L-carnitine, essential for the transport of fatty acids into mitochondria and the subsequent degradation by ß-oxidation. Aim of the present study was to characterize L-carnitine transport in EpiAirway™, a 3D organotypic in vitro model of primary human tracheal-bronchial epithelial cells that form a fully differentiated, pseudostratified columnar epithelium at air-liquid interface (ALI) condition. In parallel, Calu-3 monolayers grown at ALI for different times (8d or 21d of culture) were used as comparison. OCTN2 transporter was equally expressed in both models and functional at the basolateral side. ATB0,+ was, instead, highly expressed and active on the apical membrane of EpiAirway™ and only in early-cultures of Calu-3 (8d but not 21d ALI). In both cell models, L-carnitine uptake on the apical side was significantly inhibited by the bronchodilators glycopyrrolate and tiotropium, that hence can be considered substrates of ATB0,+; ipratropium was instead effective on the basolateral side, indicating its interaction with OCTN2. Inflammatory stimuli, such as LPS or TNFα, caused an induction of SLC6A14/ATB0,+ expression in Calu-3 cells, along with a 2-fold increase of L-carnitine uptake only at the apical side; on the contrary SLC22A5/OCTN2 was not affected. As both OCTN2 and ATB0,+, beyond transporting L-carnitine, have a significant potential as delivery systems for drugs, the identification of these transporters in EpiAirway™ can open new fields of investigation in the study of drug inhalation and pulmonary delivery.


Assuntos
Sistema ASC de Transporte de Aminoácidos/fisiologia , Carnitina/metabolismo , Células Epiteliais/química , Sistema Respiratório/citologia , Membro 5 da Família 22 de Carreadores de Soluto/fisiologia , Sistema ASC de Transporte de Aminoácidos/análise , Transporte Biológico/efeitos dos fármacos , Broncodilatadores/farmacologia , Técnicas de Cultura de Células/métodos , Polaridade Celular , Glicopirrolato/farmacologia , Humanos , Membro 5 da Família 22 de Carreadores de Soluto/análise , Brometo de Tiotrópio/farmacologia
2.
Kidney Blood Press Res ; 42(3): 398-405, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28668962

RESUMO

BACKGROUND/AIMS: Carnitine is essential for the transport of long-chain FAs (FA) into the mitochondria for energy production. During acute exercise, the increased demand for FAs results in a state of free carnitine deficiency in plasma. The role of kidney in carnitine homeostasis after exercise is not known. METHODS: Swiss Webster mice were sacrificed immediately after a 1-hour moderate intensity treadmill run, and at 4-hours and 8-hours into recovery. Non-exercising mice served as controls. Plasma was analyzed for carnitine using acetyltransferase and [14C] acetyl-CoA. Kidney was removed for gene and protein expression of butyrobetaine hydroxylase (γ-BBH), organic cation transporter (OCTN2), and peroxisome proliferator-activated receptor (PPARα), a regulator of fatty acid oxidation activated by FAs. RESULTS: Acute exercise caused a decrease in plasma free carnitine levels. Rapid return of free carnitine to control levels during recovery was associated with increased γ-BBH expression. Both mRNA and protein levels of OCTN2 were detected in kidney after exercise and during recovery, suggesting renal transport mechanisms were stimulated. These changes were accompanied with a reciprocal increase in PPARα protein expression. CONCLUSIONS: Our results show that the decrease in free carnitine after exercise rapidly activates carnitine biosynthesis and renal transport mechanism in kidney to establish carnitine homeostasis.


Assuntos
Carnitina/biossíntese , Rim/metabolismo , Condicionamento Físico Animal , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Animais , Carnitina/sangue , Ácidos Graxos , Homeostase , Camundongos , Receptores Ativados por Proliferador de Peroxissomo/análise , Condicionamento Físico Animal/fisiologia , Membro 5 da Família 22 de Carreadores de Soluto/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...